
leXsolar-H₂ Ready-to-go

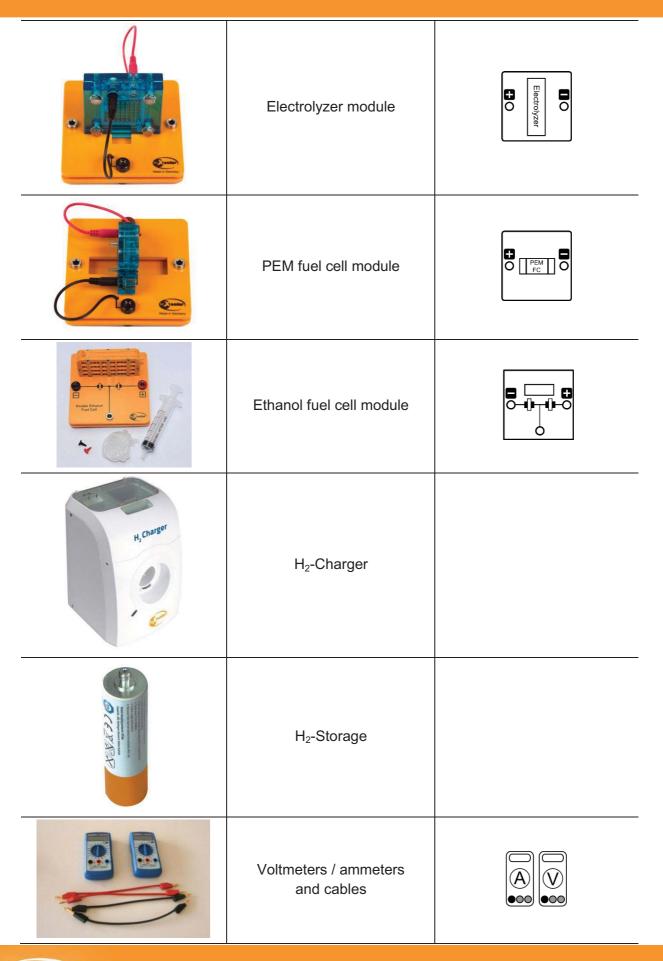
Instructions Manual

leXsolar-H₂ Ready-to-go

Student's manual

П	l۲	٦f	r	1	Ч		_	ti	0	n
	ш	ш	Л,	יע	u	u	b	u	v	Ш

1	Designation of components	5
2	Handling suggestions	8
	2.1 Operation of the electrolyzer	8
	2.2 Operation of the PEM fuel cell	10
	2.3 Operation of the H ₂ -Charger and H ₂ -Storage	11
II I	Experiments	
1.	. I-V curve of a solar module	14
2.	.1 Properties of an electrolyzer	16
2.2	.2 Characteristic curve of the electrolyzer	17
2.3	.3 FARADAY- and energy efficiency of the electrolyzer	19
2.4	.4 Derivation of FARADAY's first law	21
3.	.1 Properties of a PEM fuel cell	24
3.2	.2 I-V-curve of a PEM fuel cell	26
3.3	.3 FARADAY- and energy efficiency of a PEM fuel cell	29
3.4	.4 Series and parallel circuits of PEM fuel cells	31
4.	.1 Working principles of an ethanol fuel cell	34
4.:	.2 Characteristic curve of an ethanol fuel cell	36
4.3	.3 Temperature dependence of an ethanol fuel cell	38
4.4	.4 Concentration dependence of an ethanol fuel cell	40


Components

1 Designation of components

Standard equipment of leXsolar-H₂ Ready-to-go									
Designation	Component	Symbol in the Experimental Setup							
Reidits/schaltung peridite/sconnecditors	leXsolar main board								
	Solar module (2.5V, 420mA)								
	Motor module without gear								
O_1 kQ Rose Rose O_100 Q Rose Rose Anne	Potentiometer module	(1)							
100 H2 100 100 100 100 100 100 100 100 100 10	Gas storage module	O2 0 H2							

Components

Components

2 Handling suggestions

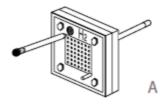
When conducting experiments with the leXsolar-H₂ Ready-to-go, some advice concerning the handling of the components and devices should be considered.

2.1 Operation of the electrolyzer

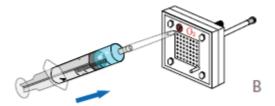
Specifications:

- Input voltage: 1.8 V ~ 3 V (D.C.)

- Input current: 0.7 A


Hydrogen production rate: 7 ml per minute at 1 A
Oxygen production rate: 3,5 ml per minute at 1 A

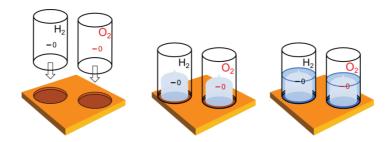
Important handling guidelines:

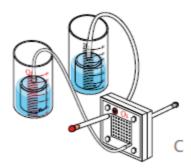

- Whenever not in use, the electrolyzer should be stored in an air-tight plastic bag, to keep it from drying
- Positive and negative pin of the electrolyzer must always be connected to correctly to the voltage source, to avoid damages to the electrolyzer.
- The electrolyzer must only be used with moistened membranes. The distilled water must be filled in on the O₂-side and should be allowed to soak for about 3 minutes. Connecting the dry electrolyzer to the voltage source can lead to irreparable damages.

User instructions:

1. The electrolyzer should be placed on a flat surface. The short piece of tube must be connected to the upper port on the H₂-side (black port) and be sealed with the black pin (see A).

2. The syringe must be filled with distilled water and another short piece of tube should be fitted to it. The other end of the tube must be connected to the upper port on the O_2 -side (red port) (see B).





Now, using the syringe, the water should slowly be pumped into the electrolyzer until it leaks out of the lower port. The syringe can now be pulled off the tube, which can be sealed with the red pin. At this point the electrolyzer should sit for 3 minutes.

3. Now, the water barrels should be filled with distilled water up to their respective markings.

- 4. Each gas storage tank should be pinned onto the ring mount at the bottom of each water barrel, so that the grooves on the bottom of the gas tanks are aligned with the grooves of the ring mounts. Excess water can be removed using the syringe.
- 5. At this point, the gas storage tanks can be connected to the lower ports of the electrolyzer using the long pieces of tube. The black port of the H_2 -side must be connected to the H_2 storage tank and the same goes for the red O_2 -side and the O_2 tank (see C).

- 6. The electrolyzer can now be placed onto the module plate and be connected to it using the respective cables (red for O_2 , black for H_2).
- 7. Now, the unit can be connected to the solar module or an external voltage source to start the electrolytic process.

<u>NOTE</u>: If the hydrogen gas shall later be used for a fuel cell experiment, it is recommended to put a clamp on the tube connecting the H_2 -side of the electrolyzer with the H_2 tank. It can be closed after the gas production, so that the hydrogen can be stored in its tank for later experiments.

2.2 Operation of the PEM fuel cell

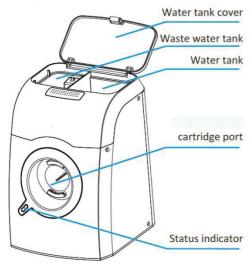
Specifications:

Output power: 270 mWOutput voltage: 0,6 V (DC)Output current: 0,45 A

Important handling guidelines:

- Whenever not in use, the fuel cell should be stored in an air-tight plastic bag, to keep it from drying out.

User instructions:


- 1. To operate the fuel cell, hydrogen gas is needed. This can be obtained from the H_2 -Storage or from the H_2 tank from a previous experiment.
- 2. If the hydrogen is taken from the gas tank, the tube must be clamped to avoid hydrogen gas to leak.
- 3. The tube of the H_2 tank must be connected to the lower port of the fuel cell. The O_2 supply for this model is ensured by the ambient air.
- 4. The upper port of the fuel cell must be sealed, using a short piece of tube and a pin.
- 5. The fuel cell can now be placed onto the module plate and be connected to it using the respective cables (red for O_2 , black for H_2).
- 6. Now, the unit can be connected to an electrical load. (Mind the polarity!).
- 7. By opening the tube clamp the experiment can be started.

<u>NOTE</u>: For quantitative experiments like taking a characteristic curve, we recommend flushing the fuel cell with hydrogen gas by initiation the gas supply (opening the tube clamp on the tank or opening the valve on the H_2 storage) and removing the pin on the short tube for only 1-2 seconds.

2.3 Operation of the H₂-Charger and H₂-Storage

Designation of the parts:

Specifications H₂-Charger:

- Power: 23 W

- Input voltage: 10 V-19 V (DC)

- Use: De-ionized or distilled water (10-40°C)

Water consumption: ca. 20 ml/hHydrogen pressure: 0-3 MPa

- Hydrogen production rate: ca. 3 l/h

- Hydrogen purity: 99.99%

- Refill time per cartridge: about 4 h

Specifications H₂-Storage:

- Capacity: 10 I hydrogen

- Storage material: AB5 metal hydride

- Load pressure: 3 MPa

- Working temperature: 0-55°C

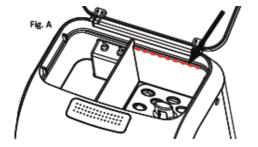
Important handling guidelines:

- The H₂-Charger must not be disassembled.

- Both the H₂-Charger and the H₂-Storage must be kept away from heat or flames.

- The H₂-Charger should be operated in an upright position.

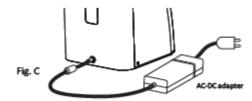
- Operations should be done in a well-vented room.

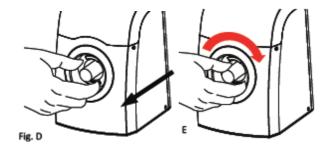

- All electric connections should be kept away from water.

Status light:

green	red	System status		
on		H₂-Storage full		
1 second on, 1 second off		Filling of H ₂ -Storage is halted		
	on	H ₂ -Storage is being filled		
	1 second on, 1 second off	Add water or empty the waste water container		

Usage instructions:


1. Firstly, fill distilled or deionized water up to the mark (see red line and arrow in the figure).

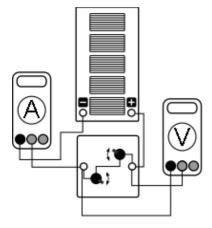


2. Connect the power adaptor to the H₂-Charger. The status light should flash green.

3. Insert the H_2 -Storage into the opening on the front side of the H_2 -Charger. For this, the stick should be turned clockwise until it locks in place. Don't apply too much force!

- 4. While the status light is flashing red, the H₂-Storage is being filled. Only when the status light flashes green, the cartridge is completely filled. The stick may now be removed by turning it counter clockwise.
- 5. Now remove the power adaptor and empty the water tank, in case the H₂-Charger will not be used within the following week. If further cartridges must be filled, revisit this procedure, starting at point 3.

<u>NOTE:</u> Distinct noises (gargling and whistling) are normal during the charging process and are being produced by the self-cleaning of the device.



1. I-V curve of a solar module

Goals

Take the I-V curve of a solar module and interpret ist behavior.

Setup

Equipment needed

- Solar module
- Lamp
- Cables
- Ammeter
- Voltmeter
- Potentiometer module

Procedure

- 1. Set up the experiment in accordance with the drawing.
- 2. Place the lamp in front of the solar module (distance ca. 30 cm) and switch on the lamp.
- 3. Set sensible values for the voltage and measure the resulting current. For this, first adjust the $1k\Omega$ resistor and then the 100Ω resistor for better control.
- 4. Enter your measurements into the table.

Measurements

V in V	I in mA	P in mW

1. I-V curve of a solar module

Evaluation

- 1. Calculate the power for every pair of voltage and current values and enter your results into the table.
- 2. Plot the respective value in the given diagram.
- 3. Describe the behavior of the current and the power in dependence of the voltage.

Diagrams

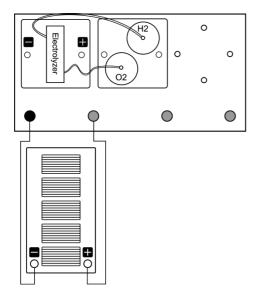
2.

Amul

P in mW

V in V

3.			



2.1 Properties of an electrolyzer

Goals

Investigate the ability of the electrolyzer to split water.

Setup

Equipment needed

- leXsolar main board
- Electrolyzer module
- Gas storage module
- Tubes
- Solar module
- Lamp
- Cables
- Distilled water

Procedure

1. Assemble the electrolyzer module and the gas storage module in accordance with the drawing. Place the lamp in front of the solar module (distance ca. 30 cm).

You can find notes on how to set up and use the electrolyzer in chapter "Operation of the electrolyzer" on page 8.

- 2. Switch on the lamp.
- 3. Watch what happens inside the gas storage tanks.
- 4. Note the filling level after 15 minutes.

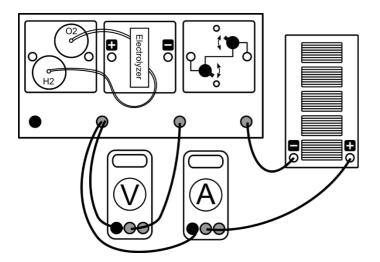
Observation

Produced amount of H₂:

Produced amount of O₂:

Evaluation

1. What is the composition of water? Use the measured amounts of gas in for your explanation.



2.2 Characteristic curve of the electrolyzer

Goals

Use the electrolyzer to split water and take its I-V-curve.

Setup

Equipment needed

- leXsolar main board
- Electrolyzer module
- Gas storage module
- Solar module
- Potentiometer module
- Voltmeter
- Ammeter
- Cables
- Distilled water
- Tubes
- Lamp

Procedure

- 1. Set up the experiment in accordance with the drawing. Place the lamp in front of the solar module (distance ca. 30 cm).
 - You can find notes on how to set up and use the electrolyzer in chapter "Operation of the electrolyzer" on page 8.
- 2. Set the potentiometer to the highest resistance.
- 3. Switch on the lamp.
- 4. Set sensible values for the voltage and measure the resulting current. For this, first adjust the $1k\Omega$ resistor and then the 100Ω resistor for better control.
- 5. Enter your measurements into the table.

Measurements

V in V					
I in mA					

Evaluation

- 1. Note your measured values in the diagram.
- 2. Interpret the I-V-curve of the electrolyzer.

